МУНИЦИПАЛЬНОЕ АВТОНОМНОЕ УЧРЕЖДЕНИЕ ДОПОЛНИТЕЛЬНОГО ОБРАЗОВАНИЯ «ГОЛЫШМАНОВСКИЙ МОЛОДЕЖНЫЙ ЦЕНТР»

Тюменская обл., р.п. Голышманово ул. Садовая, 102 , тел./факс 8(34546)25033 эл. почта golcdt@yandex.ru

«Утверждаю»
Директор МАУ ДО
«Гольнимановский МН»
Т.А.Оелезнёва
«Думинановский МН»
Т.А.Оелезнёва

Дополнительная общеобразовательная общеразвивающая программа технической направленности «Юный инженер»

Возраст обучающихся: 9-18 лет Срок освоения:2года

> Автор – составитель Трофимов Федор Николаевич , педагог дополнительного образования

Принята на заседании педагогического совета Протокол № <u>1</u> от «УБ »abey eig 2022г.

р.п. Голышманово 2022г.

Пояснительная записка

Если вы будете работать для настоящего, то Ваша работа выйдет ничтожной; надо работать, имея в виду только будущее. А.П. Чехов

В современном мире скорость развития материальных, информационных и социальных технологий во всех сферах жизни общества и каждого человека стремительно растет. Уровень технологий определяет экономическое состояние любой страны, ее место на мировых рынках, качество жизни. Для разработки и использования новых технологических принципов и технологий необходимы определенные модели мышления и поведения (технологическая грамотность и изобретательность), которые, как показывает опыт многих стран, формируются в школьном возрасте.

Интересы нашей страны на данном этапе развития требуют, чтобы внимание обучающихся было обращено на инженерно-техническую деятельность и развитие высокотехнологичного производства. Обществу необходима личность, способная самостоятельно ставить учебные цели, проектировать пути их реализации, контролировать и оценивать свои достижения; особую значимость приобретают умения работать с разными источниками информации, оценивать их и на этой основе формулировать собственное мнение, суждение, оценку.

Современный человек должен ориентироваться в окружающем мире как сознательный субъект, адекватно воспринимающий появление нового, умеющий ориентироваться в окружающем, постоянно изменяющемся мире, готовый непрерывно учиться.

В настоящий момент в России развиваются нанотехнологии, электроника, механика и программирование, т.е. созревает благодатная почва для развития компьютерных технологий, робототехники, 3D моделирования, прототипирования.

Именно сфера дополнительного образования детей создает особые возможности для развития образования в целом, в том числе для расширения доступа к глобальным знаниям и информации, опережающего обновления его содержания в соответствии с задачами перспективного развития страны. Фактически эта сфера становится инновационной площадкой для отработки образовательных моделей и технологий будущего, а персонализация дополнительного образования определяется как ведущий тренд развития образования в XXI веке.

Программа составлена на основании:

- Федерального закона РФ «Об образовании в Российской Федерации» № 273-ФЗ;
- Распоряжения Правительства Российской Федерации от 31.03.2022 №678-р « Об утверждении Концепции развития дополнительного образования детей до 2030г»;
- Приказа Министерства образования и науки РФ от 09 ноября 2018 г. N196 "Об утверждении Порядка организации и осуществления образовательной деятельности по дополнительным общеобразовательным программам" (сизменениямина30сентября2020года).;
- Методических рекомендаций по проектированию дополнительных общеразвивающих программ, направленных письмом Минобрнауки России от 18.11.2015 № 09-3242:
- Санитарных правил СП 2.4.3648-20 «Санитарно-эпидемиологические требования к организациям воспитания и обучения, отдыха и оздоровления детей и молодежи», утвержденных 28.09.2020 г. № 28 (регистрационный номер 61573 от 18.12.2020 г.),
- Приказа Минобрнауки России от 23.08.2017 № 816 «Об утверждении Порядка применения организациями, осуществляющими образовательную деятельность, электронного обучения, дистанционных образовательных технологий при

реализации образовательных программ» (Зарегистрировано в Минюсте России 18.09.2017 N 48226);

- Плана работы по реализации Концепции развития дополнительного образования детей до 2030 года I этап (2022- 2024годы) в Тюменской области, утвержденного приказом Департамента образования и науки Тюменской области, Департаментом физической культуры и спорта Тюменской области, Департаментом культуры Тюменской области, Департаментом социального развития Тюменской области , Департамента информатизации Тюменской области № 556/325/1285/315-п/151-од от 28.07.2022г.,
- Устава МАУ ДО «Голышмановский МЦ».

Направленность программы - научно-техническая. Программа направлена на развитие у детей навыков и знаний в области естественно-научного цикла, программирования, конструирования, проектирования.

Актуальность программы обусловлена тем, что приоритетным направлением в дополнительном образовании являются программы технической направленности. В нашем городском округе очень мало учреждений, которые могут предоставить образовательную услугу по программе «Робототехника» и «3D моделирование», а спрос и заинтересованность детей и родителей очень велика.

Новизна программы заключается в изменении подхода к обучению учащихся, а именно – внедрению в образовательный процесс новых форм обучения, таких как проектная деятельность и изучения посредством эксперимента. А также программа предполагает синтез занятий по робототехнике и 3D моделированию.

Программа «Юный инженер» является разноуровневой. Она позволяет учитывать разный уровень развития и разную степень освоения содержания программы детьми.

Педагогическая целесообразность программы заключается в том что, она является целостной и непрерывной в течении всего процесса обучения, и позволяет школьнику шаг за шагом раскрывать в себе творческие возможности и самореализоваться в с современном мире. В процессе конструирования и программирования дети получат дополнительное образование в области физики, механики, электроники и информатики. Очень важным представляется тренировка работы в коллективе и развитие самостоятельного технического творчества.

Стартовый уровень - предполагает использование и реализацию общедоступных и универсальных форм организации материала, минимальную сложность предлагаемого для освоения содержания программы, формирование творческих способностей детей, удовлетворение их индивидуальных потребностей в интеллектуальном, нравственном и физическом совершенствовании, организация свободного времени; мотивацию личности к познанию, творчеству, труду.

Продолжительность стартового уровня – 5,5 месяцев, объем –86 часа. Режим занятий – 2 занятия в неделю по 2 часа.

Прогнозируемая результативность уровня:

- освоение образовательной программы;
- переход обучающихся на базовый уровень.

После овладения программой стартового уровня, проведения мониторинга готовности к обучению на следующем уровне, обучающийся переводится на базовый уровень.

Базовый уровень - предполагает использование и реализацию таких форм организации материала, которые допускают освоение специализированных знаний; обеспечение прав ребёнка на развитие, личностное самоопределение и самореализацию; обеспечение адаптации к жизни в обществе, профессиональной ориентации; выявление и поддержка детей, проявивших выдающиеся способности; выявление и развитие у обучающихся способностей и интереса к научной, исследовательской деятельности.

Продолжительность базового уровня – 7,5 месяцев, объем – 120 часов. Режим занятий: 2 занятия в неделю по 2 часа.

Прогнозируемая результативность уровня:

- освоение образовательной программы;
- участие в окружных и региональных мероприятиях не менее 50% обучающихся.

Продвинутый уровень - предполагает применение знаний программирования и робототехники, 3D печати при создании проектов, воплощая свои творческие идеи.

Продолжительность продвинутого уровня — 5 месяцев, объем — 82 часа. Режим занятий: 2 занятия в неделю по 2 часа.

Прогнозируемая результативность уровня:

- освоение образовательного уровня;
- 80% практической работы;
- профессиональное самоопределение.

Возраст детей, участвующих в реализации программы

Программа адресована детям 9— 18 лет. В коллектив принимаются все желающие. Наличие специальной подготовки обучающихся не требуется. Состав группы 10-15 человек.

Режим занятий:

1 год обучения: 144 часа в год, по 2 часа 2 раза в неделю

2 год обучения: 144 часа в год, по 2 часа 2 раза в неделю

Цель и задачи программы

Цель программы: развитие инженерного мышления и формирование раннего профессионального самоопределения подростков и юношества в процессе программирования, 3D-моделирования и прототипирования.

Задачи программы стартового уровня

Образовательные: знакомство с особенностями создания роботов на Arduino UNO, создание простейших моделей, знакомство с программным обеспечением.

Развивающие: развивать крупную и мелкую моторику; развивать умение находить нестандартный подход к решению задач.

Воспитательные: воспитывать коммуникативную культуру, умение аргументировано отстаивать свою точку зрения.

Задачи программы базового уровня

Образовательные: знакомство с особенностями создания 3D моделей и подбором текстурных материалов для проекта соответственно творческому замыслу.

Развивающие: развивать логическое и 3x-мерное воображение для создания собственных 3D моделей.

Воспитательные: воспитывать готовность к саморазвитию в сфере информационных технологий.

Задачи программы продвинутого уровня

Образовательные: научить синтезировать навыки робототехники, программирования, 3D моделирования и 3D печати при создании проектов.

Развивающие: развивать логическое и 3х-мерное воображение для создания собственных моделей роботов.

Воспитательные: воспитывать способствовать формированию потребности к осознанному использованию Робототехники и 3D моделирования, 3D печати при создании своих проектов.

Основные принципы обучения:

- 1. **Научность.** Этот принцип предопределяет сообщение детям только достоверных, проверенных практикой сведений, при отборе которых учитываются новейшие достижения науки и техники.
- 2. **Доступность.** Предусматривает соответствие объема и глубины учебного материала уровню общего развития учащихся в данный период, благодаря чему, знания и навыки могут быть сознательно и прочно усвоены.
- 3. Связь теории с практикой. Обязывает вести обучение так, чтобы ребята могли сознательно применять приобретенные ими знания на практике.
- 4. Воспитательный характер обучения. Процесс обучения является воспитывающим, ребенок не только приобретает знания и нарабатывает навыки, но и развивает свои способности, умственные и моральные качества.
- 5. Сознательность и активность обучения. В процессе обучения все действия, которые отрабатывает учащийся, должны быть обоснованы. Нужно учить ребят критически осмысливать и оценивать факты, делая выводы, разрешать все сомнения с тем, чтобы процесс усвоения и наработки необходимых навыков происходили сознательно, с полной убежденностью в правильности обучения. Активность в обучении предполагает самостоятельность, которая достигается хорошей теоретической и практической подготовкой и работой педагога.

- 6. Наглядность. Объяснение техники сборки робототехнических средств на конкретных изделиях и программных продукта. Для наглядности применяются существующие видео материалы, а так же материалы своего изготовления.
- 7. **Систематичность и последовательность.** Учебный материал дается по определенной системе и в логической последовательности с целью лучшего его освоения. Как правило, этот принцип предусматривает изучение предмета от простого к сложному, от частного к общему.
- 8. **Прочность закрепления знаний, умений и навыков.** Качество обучения зависит от того, насколько прочно закрепляются знания, умения и навыки учащихся. Не прочные знания и навыки обычно являются причинами неуверенности и ошибок. Поэтому закрепление умений и навыков должно достигаться неоднократным целенаправленным повторением и тренировкой.
- 9. **Индивидуальный подход в обучении.** В процессе обучения педагог исходит из индивидуальных особенностей детей (уравновешенный, неуравновешенный, с хорошей памятью или не очень, с устойчивым вниманием или рассеянный, с хорошей или замедленной реакцией, и т.д.) и опираясь на сильные стороны ребенка, доводит его подготовленность до уровня общих требований.

Формы организации учебных занятий:

- урок лекция;
- урок презентация;
- практическое занятие;
- урок соревнование;
- выставка;
- учебная конференция.

Таким образом, программа предполагает использование таких организационных форм, которые стимулируют процесс творческого мышления детей, и, с одной стороны, обучают их работе в команде, с другой – не исключают элемент состязательности и конкурентности.

Работа в режиме on-line (основа – познавательная и коммуникативная деятельность) Индивидуальные консультации в режиме on-line. Данная форма организации образовательного процесса позволяет оперативно оказывать индивидуальную помощь обучающимся по освоению отдельных тем или разделов программы, а также в углубленном изучении предмета.

Планируемые результаты

По итогам освоения программы обучающиеся должны: Знать:

- основные компоненты конструкторов Arduino;
- конструктивные особенности различных моделей, сооружений и механизмов;
- компьютерную среды, включающую в себя графический язык программирования;
- виды подвижных и неподвижных соединений в конструкторе;
- конструктивные особенности различных роботов;

- приемы и опыт конструирования с использованием специальных элементов, и других объектов и т.д.;
- основные алгоритмические конструкции, этапы решения задач с использованием ЭВМ;
- основы технического черчения и работы в системах трехмерного моделирования КОМПАС-3D и FreeCAD.

уметь:

- использовать основные алгоритмические конструкции для решения базовых задач;
- конструировать различные модели;
- использовать созданные программы;
- применять полученные знания в практической деятельности;
- работать с технической документацией, а также развивать навыки поиска, обработки и анализа информации;
- применять изученные инструменты при выполнении научно-технических проектов.

владеть:

- навыками работы с роботами;
- навыками работы в среде Arduino;
- навыками объемного, пространственного, логического мышления и конструкторскими способностями;
- навыками работы с 3D принтером «Hercules Strong».

Индивидуальная образовательная программа обучающегося.

Индивидуальный образовательный маршрут обучающегося определяется как персональная траектория освоения содержания образования, позволяющая обучающимся выбирать наиболее удобные формы и темы для проектной работы и является эффективным инструментом формирования компетенций в сфере опытнической и проектно-технической деятельности.

Группа индивидуального обучения формируется из основного состава обучающихся по программе. В нее входят обучающиеся, проявляющие высокий уровень заинтересованности в проектной и социально-значимой деятельности. Возможно зачисление в группу обучающихся, ранее не проходивших обучение по данной программе, на основании собеседования. Группа делится на подгруппы численностью 1- 4 человека. Занятия для каждой подгруппы проводятся 2 раз в неделю по 2 часа. В зависимости от сложности выполняемой работы и индивидуальных потребностей обучающегося, количество часов может варьироваться: занятия проводятся для нескольких подгрупп одновременно, два занятия в неделю для одной подгруппы с последующей компенсацией часов.

Индивидуальный образовательный процесс выстраивается в соответствии со спецификой выполняемой задачи, склонностями и способностями конкретного обучающегося и предполагает наличие совместных с педагогом форм работы - консультации, учебные занятия, занятия в мастерской, выездные мероприятия, конференции, проекты и т.д.

«Утверждаю»	
Директор МАУ ДО	
«Голышмановский МЦ»	
Т.А. Селезнева	
OT « »	2022г.

Учебный план

Дополнительная общеобразовательная (общеразвивающая) программа технической направленности «Юный инженер»

OB P	Продолжи Название темы, Количество часов			Формы		
Уров	тельность обучения	раздела	Всего	Теория	Практика	контроля
овый	5.5 месяцев	Введение в программу, инструктаж по ТБ	4	4	-	Опрос наблюдение
Стартовый		Эксперимент блок	82	42	40	Наблюдение тестирование
		ИТОГО:	86	46	40	
	7.5	Эксперимент блок	50	18	32	наблюдение
Базовый	месяцев	3D-моделирование и 3D-печать. Создание собственного проекта	70	21	49	Наблюдение тестирование
		итого:	120	39	81	
ЫŘ	5 месяцев	Проект солнечная система	42	10	32	наблюдение
винут		Проект робот- динозавр	28	6	22	наблюдение
Продвинутый		Создание своего проекта	12	2	10	Наблюдение
		ИТОГО:	82	18	64	тестирование
ВСЕГО ПО ПРОГРАММЕ			288	103	185	

Содержание программы (учебного плана) - стартовый уровень

- 1. Введение в программу, инструктаж по технике безопасности (приложение 2).
- 2. Основы работы в среде Arduino IDE
- 3. Эксперимент Маячок. Понятие электричества. Принципиальные схемы. Основные законы электричества. Управление электричеством. В этом эксперименте мы научимся мигать светодиодом.
- 4. Эксперимент Маячок с нарастающей яркостью. Широтно-импульсная модуляция. В этом эксперименте мы задаем различные уровни яркости светодиода.
- 5. Эксперимент Светильник с управляемой яркостью. Делитель напряжения. В этом эксперименте мы меняем яркость светодиода, вращая ручку переменного резистора.
- 6. Эксперимент Терменвокс. Пьезодинамик. В этом эксперименте мы имитируем действие музыкального инструмента терменвокс: изменяем высоту звучания бесконтактным путем, больше или меньше закрывая от света фоторезистор.
- 7. Эксперимент Ночной светильник. В этом эксперименте светодиод должен включаться при падении уровня освещенности ниже порога, заданного потенциометром.
- 8. Эксперимент Пульсар. Биполярный транзистор. Светодиодные сборки. В этом эксперименте мы плавно наращиваем яркость светодиодной шкалы, управляя большой нагрузкой через транзистор.
- 9. Эксперимент Бегущий огонёк. В этом эксперименте мы заставляем огонёк бежать по светодиодной шкале.
- 10. Эксперимент Мерзкое пианино. Кнопка. В этом эксперименте мы создаем маленькую клавиатуру, на которой можно сыграть несколько нот.
- 11. Эксперимент Миксер. Полевой транзистор. Мотор. В этом эксперименте мы создаем модель миксера с двумя скоростями работы.
- 12. Эксперимент Кнопочный переключатель. В этом эксперименте мы делаем из тактовой кнопки триггер, борясь с «дребезгом».
- 13. Эксперимент Светильник с кнопочным управлением. В этом эксперименте мы добавляем порцию яркости светодиоду одной кнопкой и убавляем другой.
- 14. Эксперимент Кнопочные ковбои. В этом эксперименте мы создаем игрушку на реакцию: кто быстрее нажмет кнопку по сигналу.
- 15. Эксперимент Секундомер. В этом эксперименте мы создаем секундомер, который считает до 10.
- 16. Эксперимент Счётчик нажатий. В этом эксперименте мы выводим на семисегментный индикатор количество нажатий на кнопку (единицы).

- 17. Эксперимент Комнатный термометр. В этом эксперименте мы измеряем температуру окружающей устройство среды и с помощью шкалы показываем, на сколько она превышает заданный порог.
- 18. Эксперимент Метеостанция. В этом эксперименте мы передаем данные об измерениях температуры на компьютер (например, для последующей обработки).
- 19. Эксперимент Пантограф. В этом эксперименте мы вращаем сервопривод на угол, задаваемый потенциометром.
- 20. Эксперимент Тестер батареек. В этом эксперименте мы выводим на жидкокристаллический дисплей данные о напряжении, измеренном на батарейке.
- 21. Эксперимент Светильник, управляемый по USB. В этом эксперименте мы отправляем устройству команды, как ему светить.
- 22. Эксперимент Перетягивание каната. В этом эксперименте мы создаем еще одну игру, на этот раз нужно быстрее соперника нажать кнопку 20 раз.
- 23. Итоговое занятие. Подведение итогов усвоения программы стартового уровня.

Содержание программы (учебного плана) – базовый уровень

- 1. Вводное занятие. Инструктаж по Технике безопасности.
- 2. Эксперимент На старт, внимание, Wi-Fi! Научимся подключать свои устройства к Wi-Fi сети. Для доступа к Wi-Fi

Научимся подключать свои устройства к Wi-Fi сети. Для доступа к Wi-Fi воспользуемся специальным модулем. Он общается с Arduino по протоколу UART.

3. Эксперимент - Удалённый термометр.

Соберём устройство для наблюдения за температурой через Интернет. Сервис dweet.io умеет строить красивый график по принимаемым данным. Будем отправлять ему данные о температуре.

4. Эксперимент - Система регистрации данных

Будем снимать показания с датчиков температуры и освещённости и записывать их в файл на microSD-карточке. Мы будем использовать формат .csv, понятный для Microsoft Excel и подобных программ. Так мы сможем с легкостью строить графики и следить, как меняются температура и освещённость в течение больших периодов времени.

5. Эксперимент - Напоминальник

Соберём систему напоминаний. На твой email-адрес может приходить письмо, содержащее время нажатия на кнопку. Свяжем между собой два компонента: сервис Webhooks и электронную почту.

6. Эксперимент - Браузерный Dendy

Сделаем из Arduino сервер с браузерной игрой. Arduino будет читать с флеш-карты файл с игрой и передавать его в Wi-Fi модуль, а модуль обработает файл и покажет в браузере страницу с игрой!

7. Эксперимент -Умный дом

Продолжим использовать мощности Wi-Fi модуля для обработки информации. Соберём выключатель света, управляемый из web-интерфейса.

8. Эксперимент -Telegram bot

Будем управлять своими устройствами прямо из мессенджера Telegram. Для этого заведём собственного бота и научим Wi-Fi модуль с ним работать.

- 9. Эксперимент -Blynk
- Познакомимся с сервисом Blynk и поуправляем RGB-светодиодом со смартфона.
- 10. Разработка и создание собственного проекта
- 11. Итоговое занятие по концу учебного года
- 12. Введение. Развитие новых технологий. Задачи и проблемы развития технологий в современной жизни.
- 13. Изучение основ технического черчения. Виды изделий и конструкторских документов. Общие определения. Правила оформления чертежей: штриховка в разрезах и сечениях, линии чертежа и их обводка, шрифты, размеры, буквенные обозначения на чертежах, масштабы, форматы чертежей, стандарты. Проекционное черчение: прямоугольные проекции, расположение видов (проекций) на чертежах, построение проекций геометрических тел, разрезы и сечения. Тестовое задание чертеж от руки.
- 14. Знакомство с программой «КОМПАС-3D LT» Типы документов Компас 3D. Типы файлов. Основные компоненты программы. Интерфейс. Контекстные меню. Главное меню и панели инструментов Общие приемы работы. Компактная панель. Панель свойств. Инструментальная панель. Практика: Тестовое задание 2D эскиз.
- 15. Документ Чертеж. 2D-моделирование. Оформление чертежа. Параметры текущего чертежа. Использование видов. Получение изображения в разных масштабах. Тестовое задание 2D-чертеж по модели.
- 16. Документ Деталь.3D-моделирование. Рабочее пространство. Дерево модели. Компактная панель. Панель свойств. Эскиз. Вспомогательная геометрия. Создание модели с помощью операции Выдавливание и вырезать Выдавливанием. Дополнительные элементы: фаски, скругления. Тестовое задание 3D-объект по модели.
- 17. Знакомство с программой FreeCAD. Интерфейс. Основные компоненты программы. Виды документов. Общие приемы работы. Верстаки. Командные панели. Панели инструментов. Дерево проекта. Редактор свойств. Файлы STL, BREP, FCSTD и их конвертирование.
- 18. Построение трехмерной модели с использованием панели примитивов. Инструментальная панель примитивов. Виды примитивов. Булевые операции. Построение 3D-объекта по образцу.
- 19. 3D- печать трехмерных моделей. 3D-принтер. Применение 3D-принтеров в различных сферах человеческой деятельности. Техника безопасности при работе с 3D-принтерами. Знакомство с моделью 3D-принтера «Hercules Strong». Печать первой 3D-модели с использованием ранее созданного в программе «FreeCAD» 3D-объекта. Построение 3 D-модели, по собственному замыслу.

- 20. Создание индивидуальных творческих проектов. Выбор проекта. Сбор информации по темам проектов. Изготовление деталей проекта на 3D принтере. Сборка конструкций для индивидуальных творческих проектов. Подготовка документации по индивидуальным творческим проектам.
- 21. Итоговое занятие. Подведение итогов усвоения программы базового уровня.

Содержание программы (учебного плана) – продвинутый уровень

- 1. Вводное занятие. Инструктаж по Технике безопасности.
- 2. Проект солнечная система.

Обозначение темы проекта. Цель и задачи представляемого проекта. Разработка механизма на основе Arduino. Составление программы для работы механизма в среде Arduino IDE. Создание моделей планет в программе в программе 3D моделирования. 3D-печать планет и конструкций к проекту «Солнечная система». Сборка всего механизма. Тестирование модели, устранение дефектов и неисправностей. Презентация проекта.

3. Проект робот-динозавр.

Обозначение темы проекта. Цель и задачи представляемого проекта. Разработка механизма на основе Arduino. Составление программы для работы механизма в среде Arduino IDE. Создание деталей для робота в программе в программе 3D моделирования. 3D-печать конструкций к проекту «Робот-динозавр». Сборка всего механизма. Тестирование модели, устранение дефектов и неисправностей. Презентация проекта.

4. Создание своего проекта.

Обозначение темы проекта. Цель и задачи представляемого проекта. Разработка механизма на основе Arduino. Составление программы для работы механизма в среде Arduino IDE. Создание деталей для робота в программе в программе 3D моделирования. 3D-печать конструкций к проекту. Сборка всего механизма. Тестирование модели, устранение дефектов и неисправностей. Презентация проекта.

5. Итоговое занятие. Подведение итогов усвоения программы продвинутого уровня.

Календарный учебный график

Год обучения	Дата начала обучения по программе	Дата окончания обучения по программе	Всего учебных недель	Количество учебных часов	Режим занятий
1	01.09.2021	31.05.2022	36	144	
2	01.09.2022	31.05.2023	36	144	

Наименование	Срок учебного	Кол-во	Наименование	Всего	Кол-во
группы/год	года	занятий в	дисциплины	акад-х	часов в
обучения	(продолжительно	неделю,	(модуля)	часов	неделю
	сть обучения)	продолж-ть			

		одного			
		занятия			
		(мин.)			
«Юный	с 01.09 –по 31.05	2 занятия по	Стартовый	86	4
инженер», 1	(36 уч. недель)	90	уровень		
г.о. (группа 1)		мин.	Базовый	58	
		(2 ак. часа)	уровень		
«Юный	с 01.09 –по 31.05	2 занятия по	Базовый	62	4
инженер», 2	(36 уч. недель)	90	уровень		
г.о. (группа 2)		мин.	Продвинутый	82	
		(2 ак. часа)	уровень		

Формы аттестации

Виды контроля программы представлены тестированием (приложение 2-4).

Оценка уровня освоения программы

В программе используются следующие уровни освоения программы:

Минимальный уровень - обучающийся не выполнил образовательную программу, нерегулярно посещал занятия.

Базовый уровень - обучающийся стабильно занимается, регулярно посещает занятия, выполняет образовательную программу.

Высокий уровень - обучающийся проявляет устойчивый интерес к занятиям, показывает положительную динамику развития способностей, проявляет инициативу и творчество, демонстрирует достижения.

Механизм отслеживания результатов

Предусматриваются различные формы подведения итогов реализации дополнительной образовательной программы:

- олимпиады;
- презентация и защита проектов;
- соревнования;
- ведение личного портфолио (приложение 5).

Методические материалы

Преподаватель ставит новую техническую задачу, решение которой ищется совместно. Если для решения требуется программирование, учащиеся самостоятельно или с помощью методического пособия составляют программы на компьютерах. Преподаватель раздает электронный конструктор. Проверив наличие основных деталей, учащиеся приступают к созданию электроприборов. С помощью языка программирования учащиеся пишут программу для микропроцессора Ардуино. Программа загружается учащимися из компьютера в контроллер готовой модели, и проводятся испытания сборки. При необходимости производится модификация программы и конструкции. По выполнении задания, учащиеся делают выводы о наиболее эффективных механизмах и

программных ходах, приводящих к решению проблемы. Удавшиеся модели снимаются на фото и видео.

Методы организации учебного процесса

Словесные методы (беседа, анализ) являются необходимой составляющей учебного процесса. В начале занятия происходит постановка задачи. В процессе работы учащиеся анализируют полученные результаты и принятые решения о более эффективных методах конструирования и программирования. Педагог использует наглядные и практические методы процессов или явлений, что помогает учащимся самостоятельно воспроизвести их. Использование такого инструмента, как конструктор Ардуино с программируемым контроллером, позволяет быстро и эффективно решить эту задачу.

Материально-техническое обеспечение

Для успешной реализации образовательной программы «Юный инженер» необходимо: наличие учебной аудитории, оснащенной столами, стульями, учебной доской, оргтехникой (проектор) для ведения аудиторных учебных занятий; набор «Матрёшка Z» - 15 штук; набор «Интернет вещей» - продолжение набора «Матрёшка» - 15 штук; 3D-принтер Hercules Strong; ноутбук –15 штуки.

Информационные источники

Список литературы для педагога

- 1. ProTechnologies Введениев Creo Parametric OOO «ИРИСОФТ». Санкт-Петербург, 2011г.
- 2. CreoParametric 2.0 «Основы работы» ООО «ИРИСОФТ». Санкт-Петербург, 2014г.
- 3. Creo Elements/Pro 5.0 Primer. Учебное пособие. ООО «ИРИСОФТ». Санкт-Петербург, 2011г.
- 4. Creo Elements/Pro 5.0 Primer Advanced. Учебное пособие. ООО «ИРИСОФТ». Санкт-Петербург, 2010г.

Список литературы для учащихся

- 1. ProTechnologies Введениев Creo Parametric OOO «ИРИСОФТ». Санкт-Петербург, 2011г.
- 2. CreoParametric 2.0 «Основы работы» ООО «ИРИСОФТ». Санкт-Петербург, 2014г.
- 3. Creo Elements/Pro 5.0 Primer. Учебное пособие. ООО «ИРИСОФТ». Санкт-Петербург, 2011г.
- 4. Creo Elements/Pro 5.0 Primer Advanced. Учебное пособие. ООО «ИРИСОФТ». Санкт-Петербург, 2010г.

Интернет-ресурсы

- 1. http://ptc.com/go/k12russia
- 2. http://инженеры-будущего.рф/
- 3. http://learningexchange.ptc.com/tutorials/populare/
- 4. http://www.youtube.com/user/bowlofnoodl3
- 5. https://www.youtube.com/user/EACPDS

План воспитательной работы

Месяц	Мероприятия,	Массовые	Конкурсные
50/14	организуемые для	мероприятия	мероприятия.
	обучающихся	различного уровня,	wepenprintini.
	объединения и их	в которых	
	родителей	обучающиеся	
	родителен	могут принять	
		участие	
Сентябрь	Родительские собрания	День открытых	
	. ognionzamie acapanimi	дверей	
Октябрь	Беседы «Безопасный	Поздравления	
,	маршрут в учреждение»	учителей с	
		, праздником «День	
		учителя»	
Ноябрь	Родительское собрание	Мероприятия ко	
,	"Результаты работы	Дню народного	
	объе́динения"	единства	
Декабрь	Беседы по правилам	Новогодняя ёлка	
, ,	поведения в зимний		
	период, профилактике		
	травматизма		
Январь	Мероприятие, беседы по	Рождественские	
,	формированию	мероприятия	
	здорового образа жизни		
Февраль	Мероприятие, беседы		
	по профилактике		
	правонарушений		
	несовершеннолетних,		
Mapm	- Родительские собрания	Праздничные	
	по профилактике	мероприятия	
	детского дорожно-		
	транспортного		
	травматизма,		
Апрель	Мероприятие, беседы по	Областная	
	информационной	патриотическая	
	безопасности	акция	
		«Георгиевская	
		ленточка»	
Май	Беседы по правилам	Парад Победы в	
	поведения в летний	Великой	
	период (безопасность	Отечественной	
	при езде на велосипеде,	войне	
	правила поведения на		
	воде, в лесу,		
	профилактика		
	солнечного удара,		
	клещевого энцефалита)		
Июнь	Оздоровительный		
	лагерь с дневным		
	пребыванием		
Июль	Оздоровительный		

лагерь с дневным	
пребыванием	

Приложение 1.

Инструкция по технике безопасности на занятии

- 1. Общие требования безопасности
- 1.1. К работе в лаборатории робототехники допускаются обучающиеся прошедшие инструктаж по охране труда, медицинский осмотр и не имеющие противопоказаний по состоянию здоровья.
- 1.2. При работе в лаборатории обучающиеся должны соблюдать правила поведения, расписание учебных занятий, установленные режимы труда и отдыха.
- 1.3. При работе в лаборатории возможно воздействие на обучающихся следующих опасных и вредных производственных факторов: неблагоприятное воздействие на организм человека неонизирующих электромагнитных излучений компьютера; нарушение осанки, искривление позвоночника, развитие близорукости при неправильном подборе размеров ученической мебели; нарушение остроты зрения при недостаточной освещенности в лаборатории; поражение электрическим током при неисправном электрооборудовании лаборатории.
- 1.4. Лаборатория робототехники должна быть укомплектована аптечкой с необходимым набором медикаментов.
- 1.5. При работе в лаборатории педагогу и обучающимся необходимо соблюдать правила пожарной безопасности, знать места расположения первичных средств пожаротушения.
- 1.6. При неисправности оборудования обучающимся необходимо прекратить работу и сообщить об этом педагогу.
- 1.7. В процессе работы с компьютером обучающиеся должны соблюдать порядок проведения работ, правила личной гигиены, содержать в чистоте рабочее место.
- 1.8. Обучающимся запрещается приносить острые, режущие, колющие и другие опасные для жизни и безопасности предметы, химические вещества.
- 1.9. Обучающимся запрещается бегать по лаборатории или играть в лаборатории в подвижные игры, без разрешения педагога подходить к имеющемуся в лаборатории оборудованию и пользоваться им, самостоятельно включать компьютеры или запускать компьютерные программы, трогать разъемы соединительных кабелей.
- 1.10. Лица, допустившие невыполнение или нарушение инструкции по охране труда, привлекаются к ответственности, и со всеми обучающимися проводится внеплановый инструктаж по охране труда.
- 2. Требования безопасности перед началом работы:
- 2.1. Проверить исправность электроосвещения.
- 2.2. Проверить исправность и рабочее состояние компьютеров и других технических средств. 2.3. Проверить безопасность рабочих мест.
- 2.4. Провести необходимую регулировку аппаратуры.
- 2.5. Проветрить кабинет.
- 3. Требования безопасности во время работы
- 3.1. Обучающимся запрещается включать компьютеры без разрешения педагога.
- 3.2. Недопустимы занятия за одним компьютером двух и более человек.
- 3.3. При работающем компьютере расстояние от глаз до экрана должно быть 0,6-0,7м, уровень глаз должен приходиться на центр экрана или на 2/3 его высоты.
- 3.4. Изображение на экранах компьютеров должно быть стабильным, ясным и предельно четким, не иметь мерцаний символов и фона, на экранах не должно быть бликов и отражений светильников, окон и окружающих предметов.
- 3.5. Длительность работы с компьютером не должна превышать: для обучающихся 6 лет 10 мин., для обучающихся 7-10 лет 15 мин., для обучающихся 12-13 лет 20 мин., для обучающихся 15-16 лет 25 мин., для обучающихся 17 лет и старше при двух уроках подряд на первом из них 30 мин., на втором 20 мин., после чего сделать перерыв не

менее 10 минут для выполнения специальных упражнений, снимающих зрительное утомление.

- 3.6. Занятия с использованием компьютеров должны проводиться не раньше, чем через 1 час после окончания учебных занятий в школе, не чаще 2 раз в неделю общей продолжительностью: для учащихся 2-5 классов не более 60 мин., для учащихся 6-х классов и старше до 90 мин.
- 3.7. Все используемые в лаборатории демонстрационные электрические приборы должны быть исправными и иметь заземление или зануление.
- 3.8. Обучающимся запрещено самостоятельно устранять неисправности компьютера.
- 4. Требования безопасности в аварийных ситуациях Педагог должен:
- 4.1. При поражении электрическим током немедленно отключить компьютер, оказать первую помощь пострадавшему, при необходимости отправить его в ближайшее лечебное учреждение и сообщить об этом администрации учреждения, врачу.
- 4.2. При возникновении пожара немедленно эвакуировать обучающихся из здания, сообщить о пожаре администрации и в ближайшую пожарную часть и приступить к тушению очага возгорания с помощью первичных средств пожаротушения.
- 4.3. При получении травмы оказать первую помощь пострадавшему, при необходимости отправить его в ближайшее лечебное учреждение и сообщить об этом администрации учреждения, врачу. Обучающий должен:
- 4.4. В случае появления неисправности в работе компьютера сообщить об этом педагогу.
- 4.5. При плохом самочувствии, появлении головной боли, головокружения и пр. прекратить работу и сообщить об этом педагогу.
- 4.6. О каждом несчастном случае пострадавший или очевидец несчастного случая обязан немедленно сообщить педагогу.
- 4.7. При возникновении нестандартной ситуации сохранять спокойствие и неукоснительно выполнять указания педагога.
- 5. Требования безопасности по окончании работы
- 5.1. С разрешения педагога обучающиеся должны выключить компьютеры и привести в порядок рабочее место.
- 5.2. Тщательно проветрить и провести влажную уборку.
- 5.3. Педагог должен закрыть окна, фрамуги, выключить свет.

Тест по прохождению стартового уровня (Данный тест можно использовать также для входного контроля на базовый уровень)

(Hamilian root momits noneribsobarb raidite Him brodhers Rempenin na sasebbin ypobelib)
1. Как называется модуль, который легко соединяется с разными исполняющими устройствами, позволяя создавать и роботов, и устройства автоматики, и приборы: A) Atmel B) LEGO Mindstorms EV3 C) Arduino D) Ни один из перечисленных вариантов 2. Какие МК являются основами Arduino: A) Microchip B) Intel 8051 C) Hitachi H8/3297 D) ATMEGA8 и ATMEGA168 3. Что из предложенных вариантов компилирует программный код и загружает его в устройство Arduino.:
A) B) D
4. Где на ПО находится поле для отображения служебных сообщений. Например, уведомлений
об успешной загрузке программы:
А) В меню программы В) В панели иконок
С) Ниже окна отображения информации <mark>D)</mark> Внизу после текстового редактора
5. Платформа Arduino имеет 14 цифровых вход/выходов. Сколько из них могут использоваться как выходы ШИМ: A) все B) 6 C) 3 D) 4
6. Как называется этот элемент : A) фоторезистор В) транзистор С) ИК приемник D) ИК датчик движения
7. Какой функцией в программе можно назначить выводу порт ввода: A) pinMode(pin, INPUT);
B) Serial.begin(9600);
C) void loop (){}
D) val = Serial.read ();
8. Каждый из 14 цифровых выводов Uno может настроен как вход или выход. А) Да
В) Нет
С) Только 1,2, 3, 4 – выходы, остальные входы
D) Только 1,2, 3, 4 – входы, остальные выходы

9. Что делает функция delay(n)?
А) Повторяет действие на n миллисекунд
В) Приостанавливает обработку программы на n миллисекунд
С) Прерывает программу на n миллисекунд
D) Переключает функцию

10. Для чего предназначен резистор? А) Сопротивляться течению тока, преобразовывая его часть в тепло
В) Меняет сопротивление в зависимости от температуры
С) Преобразовывает электрическую энергию в механическую
D) Ничего из предложенного выше
11. Что такое Переменные? А) Используется для повторения блока выражений, заключённых в фигурные скобки заданное число раз В) Определяют начало и конец блока функции или блока выражений С) Это способ именовать и хранить числовые значения для последующего использования программой D)Открывают последовательный порт и задаёт скорость для последовательной передачи данных. 12. Каким образом обычно черный провод земля подключается к плате А) К VIN выводу В) К АREF выводу С) К GND выводу D) К АО выводу 13. Какая библиотека используется для работы с LCD дисплеем? A) #include <stepper.h> B) #include <wire.h> C) #include <servo.h> D #include <liquidcrystal.h> 14. Какую функция используется для выключения светодиод: A) digitalWrite(ledPin, LOW); B) digitalRead(ledPin, HIGH);</liquidcrystal.h></servo.h></wire.h></stepper.h>
15. Какую флеш-память имеет микроконтроллер ATmega168 на Arduino? A) 16 Кб B) 1024 байта C) 512 байта D) 32 байта 16. Как можно сделать блок комментарий в Arduino: A) с помощью () B) с помощью // C) с помощью {} D) с помощью /* */ 17. Какая функция записывает псевдо-аналоговое значение, используя схему с широтно-импульсной модуляцией (РWМ), на выходной вывод, помеченный как РWМ? A) pinMode(pin, INPUT); B) analogWtite (pin, value) C) analogRead (pin) D) digitalRead (pin) 18. Какой это датчик: A) Датчик света B) Датчик температуры С) Датчик вибрации D) Ультразвуковой датчик 19. Библиотека Stepper предоставляет удобный интерфейс управления: A) LED дисплейем B) Шаговыми двигателями C)ФоторезисторомD) Сервоприводом 20. Язык программирования Arduino основан на A) Wiring, Processing, C/C++ B) Visual Basic C) Python, Java D) Assembler

Тесты по прохождению базового уровня

Отметьте знаком «+» все правильные ответы (один или несколько).

BI INANIA		30001481 III II <i>i</i>	
рыскии	CHIME I	шакиньпыи	OIREL.
- 0.00p/.	~~~	травильный	0.50

1.	При построении геометрических примитивов в КОМПАС-3D используется: а) меню; б) панель «Геометрия»; в) панель «Вид»
2.	Для построения сложных геометрических контуров в КОМПАС-3D используют команду: а) — вспомогательная линия; б) — окружность; в) — автолиния.
3. KON	Для построения объекта, состоящего только из горизонтальных и вертикальных линий в ИПАС-3D используют команду:
	а) – ортогональное черчение;
	б) – глобальные привязки;
	в) 🗖 – заливка.
4.	Для указания размеров сопряжений используют инструмент:
	а) 🖰 – линейный размер;
	б) 🥙 – диаметральный размер;
	в) – радиальный размер.
5.	Для указания видимых контуров объекта используют стиль линии:
	а) Основная
	б) — — — — Осевая в) — — — — — Штриховая
	в) — — — — — Штриховая
	авьте пропущенное слово: лавный переход одной линии в другую называют
7. 2	: 1 называют масштабом
	етьте на вопросы: каких единицах выражают линейные размеры на машиностроительных чертежах?

9. Что называется масштабом? _____

Правильные ответы:

- 1 б
- 2 B
- 3 a
- 4 B
- 5 a
- 6 сопряжение
- 7 масштаб увеличения
- 8 в миллиметрах
- 9 *Масштаб* это соотношение линейных размеров на графическом изображении к истинным величинам объекта.
- 10 Эскиз рабочий чертеж выполненный от руки, с соблюдением пропорций на глаз

ЗАДАНИЕ ТЕСТОВОГО ТИПА «САПР КОМПАС 3D»

- 1. Какая система координат применяется в САПР КОМПАС-3D?
- 1) Полярная система координат. Ее невозможно удалить или переместить в пространстве.
- 2) Правая декартова система координат. Ее невозможно уда-лить или переместить в пространстве
- 3) Каркасная система координат. Ее можно удалить или пе-реместить в пространстве.
- **4)** Правая декартова система координат. Ее можно удалить или переместить в пространстве.
- 2. Какие виды привязок вы знаете?
 - 1) Глобальные, локальные, клавиатурные.
 - 2) Первичные, вторичные, третичные.
 - 3) Системные и внесистемные.
 - 4) Модельные и физические.
 - 3. Фрагменты, хранящиеся в файлах имеют расширение

(в системе КОМПАС)

- 1) *.cdw 2) *.frw 3) *.m3d 4) *.txt 4. Выберите неверное утверждение.
- 1) Для того, чтобы курсор «прилипал» к пересечениям линий сетки необходимо в настройках привязок выбрать "по сет-ке".
- 2) Сетка нужна в том случае, если вы чертите что-то с крат-ными размерами.
- Сетка нужна для создания только вертикальных и гори-зонтальных отрезков.
- 4) Для точного черчения используется режим *сетка*. Для этого нажать на кнопку с изображением сетки, настроить

размер сетки, еще включить привязку к сетке (нажать на левый магнит).

- 5. Как установить ортогональный режим черчения в системе КОМПАС?
- 1) Нажать на клавишу *F8* или при черчении держать нажатой клавишу *Shift*
- 2) Нажать на панели *Текущее состояние* на правый магнит.
- 3) Нажать на *Enter.*
- 4) Включить сетку и привязку к сетке.
 - 6. Как отобразить *Панель* свойств, если она исчезла с экрана КОМПАС

 Инструменты Панели инструментов Панель Свойств.

- 2) Вид □ Панели инструментов □ Панель Свойств.
- 3) Сервис Панели инструментов Панель Свойств.
- **4)** Файл[⊔] Панели инструментов [□] Панель Свойств.
- 7. С помощью какого инструментов можно нарисовать окружность?
- 8. Назовите операцию, в которой для получения

объем-ной фигуры, необходимо добавить ось, лежащую в од-ной плоскости с эскизом:

9. На картинке изображено тело.

Определите с помощью какой операции оно получено.

10. Укажите

минимальное количество формообразующих опе-раций для создания трехмерной модели.

1. Система координат (абсолютная, глобальная) со-держится в каждом чертеже или фрагменте. Она

всегда совпадает...

- С верхним правым углом формата любого чертежа
- 2) С нижним левым углом формата любого чертежа.
- 3) С нижним правым углом формата любого чертежа.
- **4)** С верхним левым углом формата любого чертежа.

2. Назначение команды Привязки?

- 1) Привязка вида изображения к чертежу.
- 2) Точное черчение.
- 3) Связь окна с элементами.
- 4) Более быстрый переход к команде.
- 3. Чертежи имеют расширение (в системе КОМ-

ПАС)...

- 1) *.cdw 2) *.frw 3) *.m3d 4) *.txt
 - 4. Шаг сетки по умолчанию?
 - 1) 10 mm.
 - 2) 1 пиксель.
 - 3) 1 mm.
 - 4) 5 mm.

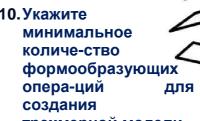
5. Ортогональный режим черчения служит для...

- 1) Создания отрезков под углом больше 90 градусов.
- 2) Создания отрезков под углом меньше 90 градусов.
- 3) Создания отрезков под углом больше 90 градусов и меньше 90 градусов.
- 4) Создания вертикальных и горизонтальных отрезков.

6. Для того, чтобы отобразить или скрыть отдельные панели инструментов, необходимо:

- Выбрать Инструменты Панели инструментов и нажать на названии панели.
- 2) Выбрать Вставка Панели инструментов и нажать на названии панели.

- 3) Выбрать *Вид*□*Панели инструментов* □ выбрать
- названии панели 4) Выбрать Сервис Панели инструментов и нажать на названии панели.
- 7. Для создания вынос-ки, нужно восполь3 о-ваться командой


...

8. Назовите операцию, в которой перемещение эскиза происходит вдоль указанной направляющей:

9. На картинке изображено тело.

Определите помощью какой операции оно получено.

10. Укажите трехмерной модели.

ЗАДАНИЕ ТЕСТОВОГО ТИПА «САПР КОМПАС 3D»

Анализ теста

Всего:	10
10) Формообразующие операции	
9) Формообразующие операции.	1
8) Формообразующие операции.	1
,	1
7) Панель <i>Геометрия</i> и панель О <i>бозначений</i> .	'
6) Панели инструментов.	1
o, op	1
5) Ортогональный режим.	l
4) Сетка.	1
	1
3) Типы документов.	1
2) Привязки.	1
1) Система координат.	1

Ответы

Nº	Вариант				
вопроса	1	2			
1	2	2			
2	1	2			
3	2	1			
4	3	4			
5	1	4			
6	2	3			
7	1,4	2			
8	Вращения	Кинематическая			
9	Выдавливания	По сечениям			
10	2	1			

	Портфолио личных достижений	
	Фамилия	
	Имя	
	Отчество	
Обр <u>∂опо</u>	разовательное учреждение: <u>Муниципальное автономное</u> полнительного образования «Голышмановский молодежный центр»	<u>учреждение</u>
Кла	acc	
Лич	с 01.09. 20г. по 31.05.20г. чная подпись учащегося	
1.	Голышманово 1. Сведения о себе Фамилия Имя Отчество	
2.	Моё имя означает	
3.	Дата рождения	
4.	Со мной вместе родились известные личности	
5.	Мой девиз	

2. Самоанализ на начало года (анализ собственных планов и интересов)

Сам	ые значит —	031011010 0001							
	Мне	нравитс	Я	3a 	ниматьс	Я	(я	yı	злекаюсь)
Іочем	іу я посеща	ю занятия:							
Лои о	бразовател	ьные планы н	на		/		учебні	ый год:	
Мои о		ьные планы н Чего я хочу <i>г</i>			/				ого сделат
іцу									
нцу									
іцу									
нцу ца Проф	рессии или с		цобить	ся?		Что со	бираюсь	для эт	ого сдела
нцу ца Проф ания ₋	рессии или с	чего я хочу д	и, в ко	ся?	могут пр	<u>Что со</u>	бираюсь	<u>для эт</u> бретён	того сделат ные
нцу ца Проф ания ₋	ессии или с	Чего я хочу д	и, в ко ⁻	ся? торых аняти	могут пр	Что со оигодить ограмм	бираюсь ься приоб е « Юны й	бретён й инже	того сделат ные
нцу ца Проф іания ₋ 3. 3	ессии или с	Чего я хочу д специальност ист посещен	и, в ко ⁻	ся? торых аняти	могут пр	Что со оигодить ограмм	бираюсь ься приоб е « Юны й	бретён й инже	ого сделат ные нер»
нцу да Проф нания ₋	ессии или с	Чего я хочу д специальност ист посещен	и, в ко ⁻	ся? торых аняти	могут пр	Что со оигодить ограмм	бираюсь ься приоб е « Юны й	бретён й инже	ого сделат ные нер»

Основные интересны)	 	себя	(на	сколько	И	почему	мне	ЭТИ	занятия
	 		_						

4. Перечень моих достижений

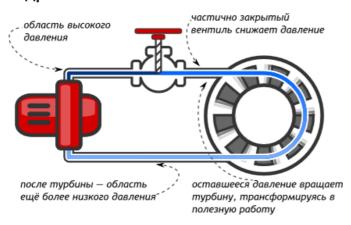
	· ·	4. Перечень моих до	Стижении	
Дата	Название мероприятия (олимпиады, конкурсы, соревнования)	Название документа (грамота, диплом, сертификат)	Уровень участия (Школьный, районный, региональный)	Место

5. Творческие и показательные работы

В данной части перечисляются собранные тобой «В копилке достижений» различные полностью законченные и оформленные творческие, исследовательские проекты, которые ты считаешь важными, и которые показывают изменения твоей учебной и творческой активности, твои интересы, реальные достижения. Так же ты можешь поместить в «копилку достижений» отзывы учителей, рецензии о твоей работе.

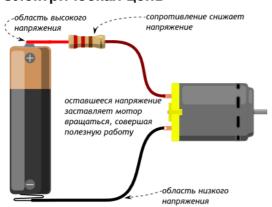
	Дата	Вид работы	П	азвание раб	ооты	
	6. Самоан	ализ по итогам		учебн	юго год	ца
1.	Итоги	прошедшего	учебного —	года	для	меня:
_						
	Из		ірованного	мне		удалось
		заплани		мне		удалось
				мне		удалось
				мне		удалось
- - 2. зыпол -				мне		удалось
	ПНИТЬ				-ому	
ВЫПОЛ	ПНИТЬ				-ому	удалось
ЗЫПОЛ - -	ПНИТЬ				тому	

_		
	 брел (a)	опыт
-		
	минаюц	цимся было
		
- 		
7. Мои представления о себе за прошедший	год	изменились
_		
_ 		
- 		
_ 		
Короткой строкой ты можешь охарактеризовать свою деяте по программе «Юный инженер»	льность	ь по работе
Радость		года
Огорчение		года


Потеря	года
Удивление	года
Открытие	года
Находка года	
Проблема года	

Теоретические материалы для обучения на стартовом уровне

Понятие электричества

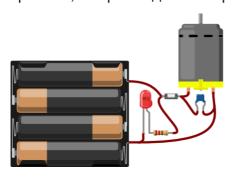

Поведение электрической цепи можно сравнить с гидравлической системой

Гидравлическая система

Под действием <i>давления</i> насоса,	Паскаль
по трубам и клапанам разного сечения,	1/cm²
из области высокого давления	
в область низкого давления	
переносится <i>объём</i> жидкости,	M ³
формируя поток определённой силы,	м³/сек
который совершает полезную <i>работу</i> ,	Джоуль
передавая энергию турбине с некой скоростью.	Ватт

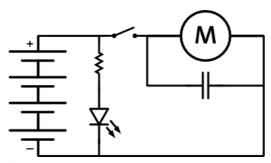
Электрическая цепь

Под действием <i>напряжения</i> источника питания,	U	Вольт
по проводникам и компонентам разного сопротивления,	R	Ом
от высокого потенциала,	+	«плюс»
к <i>низкому</i> потенциалу	-	«минус»
переносится <i>заряд</i> ,	Q	Кулон
формируя электрический <i>ток</i> определённой силы,	1	Ампер
который совершает полезную <i>работу</i> ,	W	Джоуль
превращаясь в другую <i>энергию</i> с некой <i>скоростью</i> .	Р	Ватт


Принципиальные схемы

Чтобы изобразить на бумаге как должна выглядеть та или иная электрическая цепь используют *схемы*. Схемы бывают разных видов со своими преимуществами и недостатками.

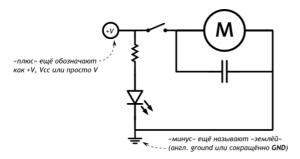
Ниже приведена одна и та же электрическая схема, изображённая по-разному, в четырёх вариациях.


Рисованная схема

Красиво, но громоздко и непрактично:

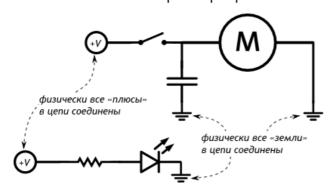
Принципиальная схема

Компактно и наглядно:



• То, что соединено линией, в реальности должно быть соединено проводником

• то, что не соединено линией, в реальности должно быть электрически изолировано

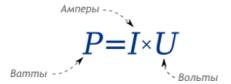

Принципиальная схема без явного источника питания

Источник питания зачастую не рисуют в явном виде, а используют отдельные символы для плюса и минуса. Такая схема ещё более компактна.

Принципиальная схема с отдельными контурами

Часто для удобства одну цепь на схемах разбивают на отдельные части. В сложных проектах так добиваются наглядности и делят зоны ответственности между несколькими инженерами-разработчиками.

Основные законы электричества


Закон Ома

Закон Ома — главный закон электричества

Мощность

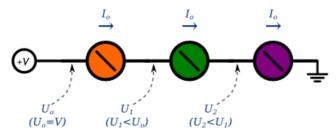
Мощность — мера скорости трансформации электрической энергии в другую форму

Зная закон Ома, можно заметить, что мощность можно рассчитать иначе:

$$P=I^2\times R=\frac{U^2}{R}$$

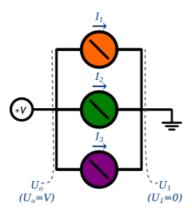
Мир не идеален и часть электроэнергии непременно трансформируется в тепло. Изза этого и греются компьютеры, телефоны, телевизоры и другая электроника.

Короткое замыкание



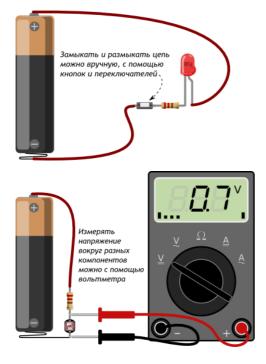
Соединение плюса с минусом напрямую, по закону Ома, приводит к очень большому току, следовательно к очень большой мощности нагрева, что в итоге приводит к возгоранию.

Это называется *коротким замыканием* или в просторечии просто «козой». Никогда не допускайте его, ни при каких обстоятельствах!


Последовательное подключение

При последовательном подключении сила тока в каждом потребителе — одна и та же, различается напряжение: в каждом компоненте *падает* его часть.

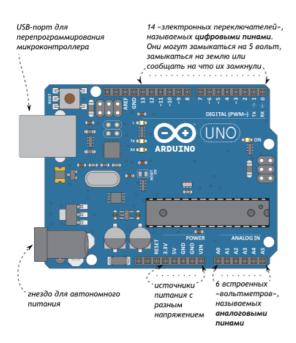
Параллельное подключение


При параллельном подключении напряжение вокруг каждого потребителя — одно и то же, различается сила тока: каждый потребляет ток в соответствии с собственным сопротивлением.

Управление электричеством

Если постоянно и монотонно трансформировать электроэнергию в другую форму, область применения электричества будет сильно ограничена. Огромный мир разнообразных полезных устройств открывается, если научиться контролировать и взаимодействовать с электричеством. Для этого существует несколько способов.

Управление вручную

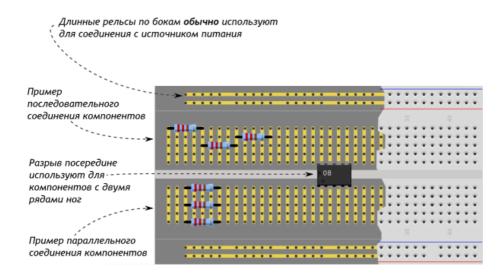


Автоматическое управление

Замыкать и размыкать цепь, измерять напряжение также можно, не вручную, а автоматически, по заданному алгоритму при помощи запрограммированного микроконтроллера.

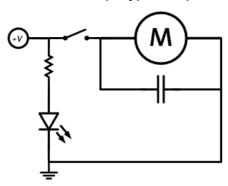
Существуют «сырые» микроконтроллеры, выполненные в виде одной микросхемы. Они дёшевы при массовом производстве, но их программирование и правильное подключение — нетривиальная задача для новичка.

Чтобы решить эту проблему, существуют готовые платы или, как ещё говорят, вычислительные платформы. Они делают процесс взаимодействия с микроконтроллером очень простым. Типичным представителем этого семейства являются платы Arduino.

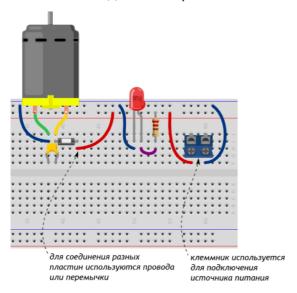

Быстрая сборка схем

Для надёжной сборки устройств создаются индивидуальные печатные платы. Если делать их самостоятельно, это займёт много времени и заставит повозиться с химикатами и паяльником. Индивидуальные платы с промышленным монтажом на заказ крайне дороги при малом тираже.

Для быстрой сборки электрических схем без пайки и без проблем существует *макетная плата*. Её же называют макетной доской, макеткой или *breadboard* ом.


Принцип работы

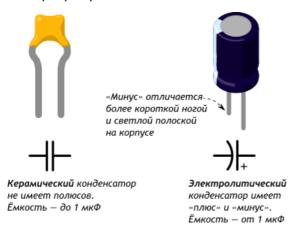
Под слоем пластика скрываются медные пластины-рельсы, выложенные по незамысловатому принципу:



Пример использования

Одну и ту же схему на макетной доске можно собрать множеством способов. Пример одной из конфигураций разберём для такой схемы:

На макетной доске её физическое воплощение может быть сделано таким способом:


На что стоит обратить внимание:

 Цвета проводов, конечно же, значения не имеют. Однако хорошим тоном является использование красных проводов для линии питания и чёрных или синих для линии земли

- Мы подключили источник питания к длинным боковым рельсам. Это позволяет не тянуть к нему самому большое количество проводов с разных участков схемы, а задача по его замене или перемещению сильно упрощается
- Положение всей схемы на макетной доске не так важно. Важно *взаимное* положение компонентов друг относительно друга
- Схема по горизонтали побита на отдельные участки, которые легко воспринимать и изменять по отдельности

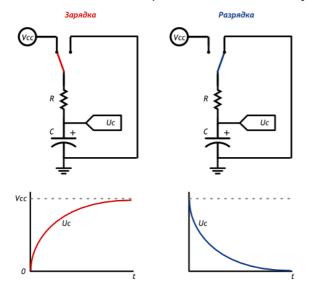
Конденсатор

Конденсатор — крошечный аккумулятор, который очень быстро заряжается и очень быстро разряжается.

Основные характеристики

Ёмкость (номинал)	С	Фарад
Точность (допуск)	±	%
Максимальное напряжение	V	Вольт

Кодирование номинала



Номинал в пФ записан на корпусе. Первые 2 цифры — основание, 3-я — множитель. Например:

- 220 = 22 × 10⁰ пФ = 22 пФ
- 471 = 47 × 10¹ пФ = 470 пФ
- $103 = 10 \times 10^3 \text{ n}\Phi = 10\ 000\ \text{n}\Phi = 10\ \text{H}\Phi$
- 104 = 10 × 10⁴ пФ = 100 000 пФ = 100 нФ

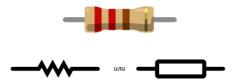
Поведение

- Если подаваемое напряжение больше внутреннего накопленного, конденсатор будет заряжаться.
- Если внешнее напряжение меньше внутреннего, конденсатор будет отдавать заряд.

Время заряда и разряда

Для связывания уровня заряда конденсатора с временем используют понятие «постоянной времени τ »:

$$\tau = R \times C$$

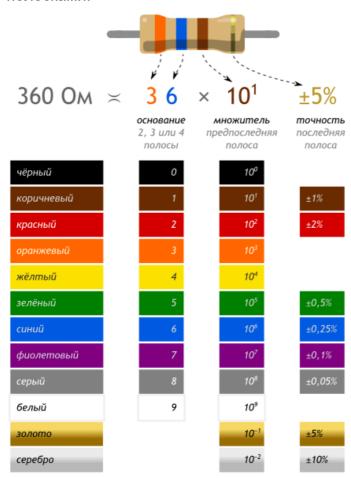

- За *т* секунд конденсатор заряжается или разряжается на 63%
- За 5×*т* секунд конденсатор заряжается или разряжается на 99%
- Если резистора в схеме нет, его роль исполняет паразитное сопротивление проводов, разъёмов, дорожек, составляющее доли Ома

Практикум

- Электролитический конденсатор в эксперименте «Пантограф»
- Керамический конденсатор в эксперименте «Перетягивание каната»

Резистор

Резистор — искусственное «препятствие» для тока. *Сопротивление* в чистом виде. Резистор ограничивает силу тока, переводя часть электроэнергии в тепло.



Основные характеристики

Сопротивление (номинал)	R	Ом
Точность (допуск)	±	%
Мощность	Р	Ватт

Цветовая кодировка резисторов

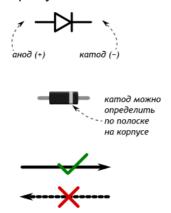
Наносить номинал резистора на корпус числами — дорого и непрактично: они получаются очень мелкими. Поэтому номинал и допуск кодируют цветными полосками.

Разные серии резисторов содержат разное количество полос, но принцип расшифровки одинаков.

Цвет корпуса резистора может быть бежевым, голубым, белым. Это не играет роли.

Если не уверены в том, что правильно прочитали полосы, можете проверить себя с помощью мультиметра.

Типовые номиналы для экспериментов

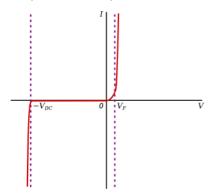


Практикум

- Токоограничительный резистор в эксперименте «Маячок»
- Резистор в делителе напряжения и фоторезистор в эксперименте «Терменвокс»
- Подтягивающий резистор в эксперименте «Мерзкое пианино»

Диод

Диод — это электрический «ниппель». У него есть 2 полюса: анод и катод. Ток пропускается только от анода к катоду.


Основные характеристики

Падение прямого напряжения	V _F	Вольт
Максимальное сдерживаемое обратное напряжение	V_{DC}	Вольт
Максимальный прямой ток	I _F	Ампер

Вольт-амперная характеристика

После того, как напряжение в прямом направлении превысит небольшой порог V_F диод *открывается* и начинает практически беспрепятственно пропускать ток, который создаётся оставшимся напряжением.

Если напряжение подаётся в обратном направлении, диод сдерживает ток вплоть до некоторго большого напряжения V_{DC} после чего *пробивается* и работает также, как в прямом направлении.

Виды диодов

Выпрямительный диод

Также известен как защитный, кремниевый

- $V_F = 0.7 B$
- V_{DC} сотни или тысячи вольт
- Открывается медлено
- Восстанавливается после пробоя обратным током

Диод Шоттки

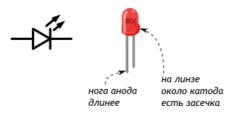
Шоттки — фамилия его изобретателя. Также известен как сигнальный, германиевый.

- $V_F = 0.3 B$
- V_{DC} десятки вольт
- Открывается быстро
- Сгорает после пробоя обратным током

Диод Зеннера

Зеннер — фамилия его изобретателя. Также известен как стабилитрон

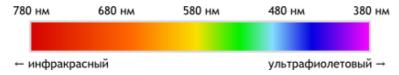
- V_F = 1 B
- V_{DC} фиксированное значение на выбор
- Умышленно используется в обратном направлении как источник фиксированного напряжения

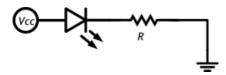

Практикум

• Защитный диод в эксперименте «Миксер»

Светодиод

Светодиод (англ. Light Emitting Diode или просто LED) — энергоэффективная, надёжная, долговечная «лампочка»


Светодиод — вид <u>диода</u>, который светится, когда через него проходит ток от анода (+) к катоду (-).


Основные характеристики

Падение напряжения	V _F	Вольт
Номинальный ток	1	Ампер
Интенсивность (яркость)	I _V	Кандела
Длина волны (цвет)	λ	Нанометр

Восприятие световых волн человеком

Типовая схема включения

Собственное сопротивление светодиода после насыщения очень мало, и без резистора, ограничивающего ток через светодиод, он перегорит

Порядок: «резистор до» или «резистор после» — не важен

Поиск подходящего резистора

Рассчитаем какой резистор R в приведённой схеме нам нужно взять, чтобы получить оптимальный результат. Предположим, что у нас такой светодиод и источник питания:

$$V_F = 2.3 \,\mathrm{B}$$

 $I = 20 \,\mathrm{mA}$
 $V_{CC} = 5 \,\mathrm{B}$

Найдём оптимальное сопротивление R и минимально допустимую мощность резистора P_R .

Сначала поймём какое напряжение должен взять на себя резистор:

$$U_R = V_{CC} - V_F = 5 \,\mathrm{B} - 2.3 \,\mathrm{B} = 2.7 \,\mathrm{B}$$

По закону Ома найдём значение сопротивления, которое обеспечит такое падение:

$$R = \frac{U_R}{I} = \frac{2.7\,\mathrm{B}}{0.02\,\mathrm{A}} = 135\,\mathrm{Om}$$

Таким образом:

• при сопротивлении более 135 Ом яркость будет ниже заявленной

• при сопротивлении менее 135 Ом срок жизни светодиода будет меньше

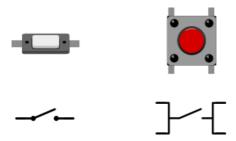
Теперь найдём мощность, которую при этом резистору придётся рассеивать:

$$P_R = I^2 \times R = 0.02^2 \, \mathrm{A} \times 135 \, \mathrm{Om} = 0.054 \, \mathrm{Bt}$$

Это означает, что при мощности резистора менее 54 мВт резистор перегорит.

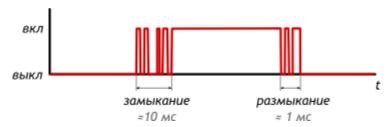
Простое правило

Чтобы не заниматься расчётами резистора каждый раз во время проведения экспериментов, можно просто запомнить правило для самого типичного сценария.


Для питания 1 светодиода на 20 мА от 5 В используйте резистор от 150 до 360 Ом.

Практикум

Светодиод в эксперименте «Маячок»


Кнопка

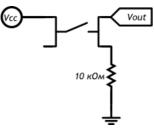
Тактовая кнопка — простой, всем известный механизм, замыкающий цепь пока есть давление на толкатель.

Кнопки с 4 контактами стоит рассматривать, как 2 пары рельс, которые соединяются при нажатии.

Эффект дребезга

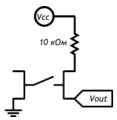
При замыкании и размыкании между пластинами кнопки возникают микроискры, провоцирующие до десятка переключений за несколько миллисекунд. Явление называется *дребезгом* (англ. bounce). Это нужно учитывать, если необходимо фиксировать «клики».

Схема подключения


Напрашивается подключение напрямую. Но это наивный, неверный способ.

Пока кнопка нажата, выходное напряжение Vout = Vcc, но пока она отпущена, Vout ≠ 0. Кнопка и провода в этом случае работают как антенна, и Vout будет «шуметь», принимая случайные значения «из воздуха».

Пока соединения нет, необходимо дать резервный, слабый путь, делающий напряжение определённым. Для этого используют один из двух вариантов.


Схема со стягивающим резистором

Есть нажатие: Vout = Vcc

Нет нажатия: Vout = 0

Схема с подтягивающим резистором

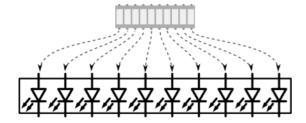
■ Есть нажатие: Vout = 0

Нет нажатия: Vout = Vcc

Практикум

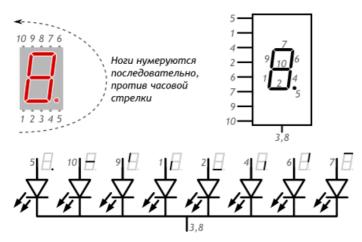
Кнопки в «Мерзком пианино»

• Кнопки в эксперименте «Миксер»

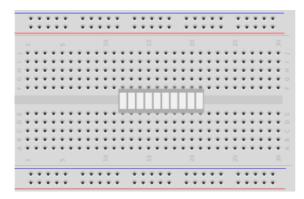

Кнопки в игре «Кнопочные ковбои»

Светодиодные сборки

Многие компоненты, используемые для индикации, представляют собой несколько отдельных светодиодов в одном корпусе.

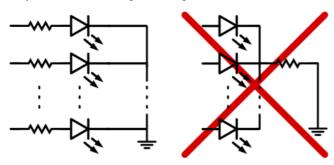

Светодиодная шкала

Светодиодная шкала — это десяток отдельных светодиодов, каждый со своим анодом и катодом.


Семисегментный индикатор

Семисегментный индикатор — это восемь светодиодов в одном корпусе: 7 сегментов + точка. Анод у каждого светодиода отдельный, а катод у всех общий, на ноге 3 или 8.

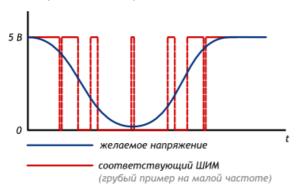
Установка на макетную плату


Для подключения на breadboard'е используйте канавку в центре, чтобы не замкнуть ноги на противоположных сторонах.

Токоограничивающие резисторы

Используйте *отдельный* резистор для каждого светодиода, иначе при разном количестве включенных сегментов их яркость будет «скакать».

Даже в случае, когда все светодиоды включаются и выключаются синхронно, лучше придерживаться этого правила. Светодиоды могут чуть отличаться своей вольтамперной характеристикой друг от друга. Первый открывшийся пропустит через себя ток, предназначенный для всех. Из-за чего он может выйти из строя и «эстафета» перейдёт к следующему.


Практикум

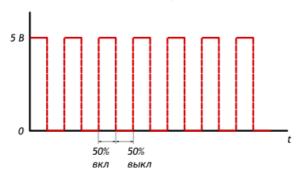
- Светодиодная шкала в эксперименте «Пульсар»
- Светодиодная шкала в эксперименте «Бегущий огонёк»
- Семисегментный индикатор в эксперименте «Секундомер»

Широтно-импульсная модуляция

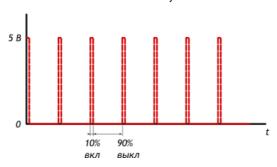
Микроконтроллеры обычно не могут выдавать произвольное напряжение. Они могут выдать либо напряжение питания (например, 5 В), либо землю (т.е. 0 В)

Но уровнем напряжения управляется многое: например, яркость светодиода или скорость вращения мотора. Для симуляции неполного напряжения используется *ШИМ* (Широтно-Импульсная Модуляция, англ. Pulse Width Modulation или просто *PWM*)

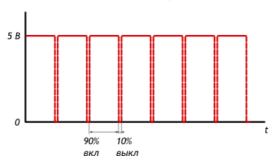
Применение


Выход микроконтроллера переключается между землёй и Vcc тысячи раз в секунду. Или, как ещё говорят, имеет частоту в тысячи герц. Глаз не замечает мерцания более 50 Гц, поэтому нам кажется, что светодиод не мерцает, а горит в полсилы.

Аналогично, разогнанный мотор не может остановить вал за миллисекунды, поэтому ШИМ-сигнал заставит вращаться его в неполную силу.

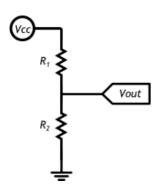

Скважность

Отношение полного периода к времени включения называют *скважностью* (англ. duty cycle). Рассмотрим несколько сценариев при напряжении питания *Vcc* равным 5 вольтам.



10% — эквивалент 0,5 В

90% — эквивалент 4,5 В



Практикум

- Управление яркостью светодиода с помощью ШИМ в эксперименте <u>«Маячок с</u> нарастающей яркостью»
- Управление большим током с помощью ШИМ и транзистора в эксперименте «Пульсар»

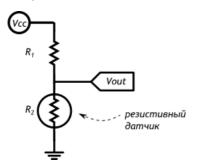
Делитель напряжения

<u>Последовательно подключённые</u> резисторы делят поступающее на них напряжение в определённой пропорции.

Расчёт пропорции

Сила тока, протекающая через резисторы одинакова, т.к. они соединены последовательно, и по закону Ома может быть рассчитана как:

$$I = \frac{V_{CC}}{R_1 + R_2}$$


По тому же закону Ома можно вычислить напряжение V_{out} , которое падает на резисторе R_2 :

$$V_{out} = U_2 = I \times R_2 = \frac{R_2 \cdot V_{CC}}{R_1 + R_2}$$

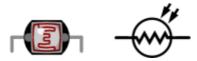
Из полученной формулы видно, что чем больше R_2 относительно R_1 , тем большее напряжение падает на нём.

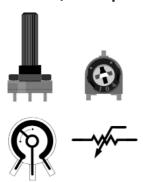
Считывание резистивных сенсоров

Если вмето R_2 использовать не постоянный резистор, а датчик, который меняет своё сопротивление, V_{out} будет зависеть от измеряемого значения.

Микроконтроллер умеет измерять напряжение. Таким образом, мы можем использовать свойства делителя напряжения для получения показаний от сенсора.

Примеры резистивных датчиков


Термистор


Термистор изменяет своё сопротивление в зависимости от собственной температуры

Фоторезистор

Фоторезистор (англ. Light Dependent Resistor или сокращённо LDR) изменяет своё сопротивление в зависимости от силы света, попадающего на его керамическую «змейку»

Потенциометр

Потенциометр ещё называют переменным резистором, триммером. Это делитель из двух резисторов в одном корпусе. Поэтому у него 3 ноги: питание, выход, земля.

Соотношение R_1 и R_2 меняется поворотом ручки. От 100% в пользу R_2 .

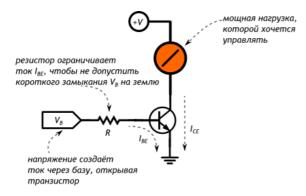
Практикум

- Потенциометр в качестве делителя напряжения в эксперименте <u>«Светильник с</u> управляемой яркостью»
- Делитель напряжения в эксперименте «Терменвокс»

Биполярный транзистор

Транзистор — это электронная кнопка. На кнопку нажимают пальцем, а на биполярный транзистор — током.

Транзисторы используют для управления мощными нагрузками при помощи слабых сигналов с микроконтроллера.


- Нога, выполняющая роль «кнопки» называется *база* (англ. base)
- Пока через базу течёт небольшой ток, транзистор открыт:

- ∘ Большой ток может втекать в *коллектор* (англ. collector)
- о и вытекать из *эмиттера* (англ. emitter)

Основные характеристики

Макс. напряжение коллектор-эмиттер	V _{CE}	Вольт
Максимальный ток через коллектор	I _C	Ампер
Коэффициент усиления	h _{fe}	

Типовая схема подключения

Транзистор усиливает максимально допустимый ток в h_{fe} раз:

$$I_{CE} = I_{BE} \times h_{fe}$$

Пример расчёта

Если управляющий сигнал на базе транзистора с h_{fe} и резистором номиналом 1 кОм составляет 5 вольт:

- Какой максимальный ток сможет пропустить через себя транзистор?
- Каким по величине будет управляющий ток?

Дано

$$V_B = 5 B$$

 $R = 1 \kappa O M$
 $h_{fe} = 50$

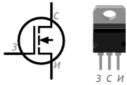
Найти

$$I_{CE}, I_{BE}$$

Решение

$$\begin{split} I_{BE} &=& \frac{V_B}{R} = \frac{5\,\mathrm{B}}{1000\,\mathrm{Om}} = 5\cdot 10^{-3}\,\mathrm{A} \\ I_{CE} &=& I_{BE} \times h_{fe} = 250\cdot 10^{-3}\,\mathrm{A} \end{split}$$

Вывод


Если на базу подаётся 5 В через резистор в 1 кОм, транзистор откроется настолько, что будет способен пропустить до 250 мА. При этом управляющий ток составит всего 5 мА

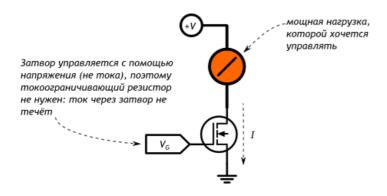
Практикум

• Биполярный транзистор в эксперименте «Пульсар»

Полевой транзистор

Полевой MOSFET-транзистор — ключ для управления большими токами при помощи небольшого *напряжения*.

- «Кнопка» называется *затвором* (англ. gate)
- Пока на затворе есть небольшое напряжение, транзистор открыт:
 - ∘ Большой ток может втекать в *сток* (англ. drain)
 - о и вытекать из *истока* (англ. source)


В отличие от <u>биполярного транзистора</u> полевой контролируется именно напряжением, а не током. Т.е. в открытом состоянии ток через затвор не идёт.

Используйте MOSFET для управления большими токами, от сотен миллиампер, когда дешёвого биполярного транзистора уже не достаточно.

Основные характеристики

Максимальное напряжение сток-исток	V_{DS}	Вольт
Максимальный ток через сток	I_D	Ампер
Сопротивление сток-исток	R _{DSon}	Ом
Рассеиваемая мощность	P_D	Ватт

Типовая схема подключения

Рассеивание тепла

Транзистор не идеален и часть пропускаемой мощности превращается в тепло.

$$P_H = I^2 \times R_{DSon}$$

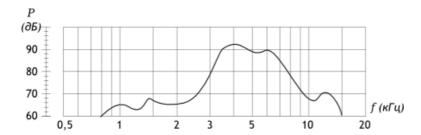
Если P_H превысит P_D , без помощи дополнительного охлаждения транзистор сгорит.

Практикум

Полевой транзистор в эксперименте «Миксер»

Пьезодинамик

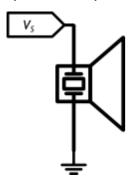
Пьезоизлучатель звука (англ. buzzer) переводит *переменное напряжение* в колебание мембраны, которая в свою очередь создаёт звуковую волну.

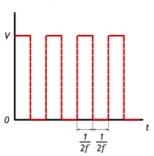

Иначе говоря, пьезодинамик — это конденсатор, который звучит при зарядке и разрядке.

Основные характеристики

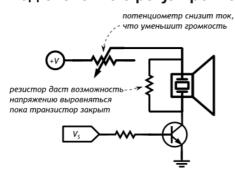
Рекомендуемое (номинальное) напряжение	V	Вольт
Громкость (на заданном расстоянии)	P	Децибелл
Пиковая частота	f_P	Герц
Ёмкость	С	Фарад

Амплитудно-частотная характеристика


Амплитудно-частотная характеристика (АЧХ) определяет громкость звука в зависимости от частоты управляющего сигнала, который и определяет высоту звучащей ноты.

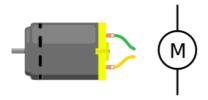

Идеальная АЧХ — это прямая, т.е. одинаковая громкость вне зависимости от частоты. Но мир не идеален и разные виды излучателей имеют разные отклонения от идеала.

Подключение напрямую


Пьезодинамик потребляет всего пару мА, поэтому можно смело подключать его прямо к микроконтроллеру

Для звучания нужно подавать на динамик квадратную волну. Какой частоты будет волна, такой частоты будет и звук

Подключение с регулировкой громкости

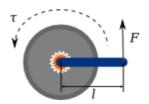


Практикум

- Пьезодинамик в эксперименте «Терменвокс»
- Пьезодинамик в «Мерзком пианино»
- Пьезодинамик в игре «Кнопочные ковбои»

Мотор

Мотор переводит электрическую энергию в механическую энергию вращения.

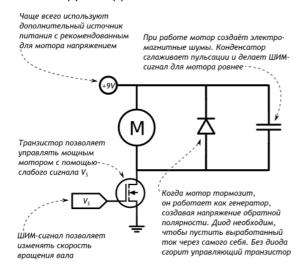


Самый простой вид мотора — коллекторный. При подаче напряжения в одном направлении вал крутится по часовой стрелке, в обратном направлении — против часовой

Основные характеристики

Рекомендуемое (номинальное) напряжение	V	Вольт
Потребляемый ток без нагрузки	I _F	Ампер
Потребляемый ток при блокировке	Is	Ампер
Скорость вращения без нагрузки	ω	C- ¹
Максимальный крутящий момент	7	Н×м

Крутящий момент


Крутящий момент определяет какая сила воздействует на точку рычага на заданном расстоянии от оси вращения.

$$\tau = F \times l$$

Силу иногда упрощённо измеряют в килограммах против гравитации Земли. А крутящий момент — в кг×см. Американцы любят измерять крутящий момент в унциях на дюйм (англ. oz×in).

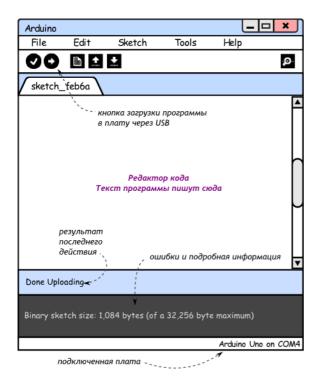
Схема подключения без возможности реверса

Моторы — мощные потребители с рядом побочных эффектов. Для управления ими необходимы дополнительные компоненты.

Предельные характеристики

 $I_{\rm S}$ всегда много больше $I_{\rm F}$ и для хобби-моторов составляет до 2 А. Выбирайте транзистор и диод, способные выдержать этот ток или не допускайте блокировки мотора.

Практикум


Мотор в эксперименте «Миксер»

Начало работы с Arduino

- 1. Скачайте Arduino IDE с официального сайта
- 2. Если у вас Windows и Arduino IDE из zip-файла, установите драйверы из папки drivers
- 3. Подключите Arduino к компьютеру через USB
- 4. Запустите Arduino IDE
- 5. В «Tools → Board» выберите модель вашей платы
- 6. В «Tools → Serial Port» выберите порт, куда она подключена
- 7. Пишите программу или загружайте готовый пример из «File → Examples»
- 8. Жмите «Upload» на панели инструментов для прошивки платы!

Перепрошивать плату можно сколько угодно раз. Программа сохраняется после обесточивания платы.

Внешний вид Arduino IDE

Если прошивка не удаётся

Проверьте, что:

- Плата получает питание, горит светодиод «ON»
- Драйверы под Windows установились корректно, и в диспетчере устройств вы видите устройство «Arduino Uno»
- Вы выбрали правильную модель платы и правильный порт (пункты 5 и 6)
- USB-кабель исправен